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** Fracture Analysis Consultants 

121 Eastern Heights Drive, Ithaca, NY 14850 

 

ABSTRACT 
 

The damage tolerance assessment of complex aerospace structural 

components requires the capability of effective modeling of 3D cracks and 

their associated propagation and velocity and path under fatigue loads. A 

3D mixed mode crack propagation theory is presented which includes the 

effect of KI, KII, and KIII, as well as non-proportional loading, elastic and 

fracture resistance anisotropy, and fracture mode asymmetry (viz. the 

ability to transition between competing tensile and shear modes of 

propagation).  A modified strain energy release rate criterion including the 

modeling of crack closure is developed and presented for a representative 

problem.  An elementary, mode I characterization of closure is used, 

leaving shear mode closure as fertile ground for further study.  

 

Use of the model is presented for an example problem with steady-

vibratory interaction.   

 

 

INTRODUCTION 

 

Three-dimensional fracture simulation has advanced significantly over the last few 

decades.  Early work was focused on building the framework to appropriately represent 

cracks in complex geometries, and calculate sufficiently accurate mixed-mode stress 

intensity factors [1].  As crack propagation capability followed, much of the effort went 

to the development of the framework necessary to model the extending crack with 

minimal user workload, such as the FRANC3D code developed at Cornell University [2].  

Non-planar crack growth algorithms typically utilized two-dimensional mode I/II crack 

turning theories that were well established a generation earlier.   

 

This approach has worked well with a wide range of engineering applications.  However, 

as the technology to model non-planar cracks in complex geometries has matured, the 

problem set has become more demanding, requiring propagation criteria that include such 
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things as HCF/LCF interaction, Mixed Non-Proportional Loading (MNPL), fracture 

mode asymmetry, and both elastic and fracture resistance anisotropy.    

 

Legacy crack propagation/turning criteria, such as the Maximum Tangential Stress 

(MTS) criterion [3], assume proportional loading (KII/KI = constant), and predict crack 

growth along KII ≈ 0 path.  For non-proportional loading, the relative proportions of KI, 

KII, and KIII vary with time throughout the cycle, and there is no path that enforces KII=0 

during the entire cycle (not to mention the influence of mode III).   Though widely 

neglected, MNPL can result from any structural situation wherein steady and cyclic 

stresses are misaligned, as in the vibrating blade problem illustrated in Figure 1  

Vibrating Rotor Blade Resulting in MNPL . 

 

Steady Spin Load

Vibratory 

Load

Steady Spin Load

Vibratory 

Load

 

Figure 1  Vibrating Rotor Blade Resulting in MNPL  

 

In order to enable crack growth simulation for this class of problems, two significant 

advances were required.  

1.   A validated theoretical approach to handle crack growth and trajectory under 

MNPL loading. 

 2.  A reduced-order nonlinear dynamics approach to enable FEM vibration modeling 

including contact between opposing crack faces.   

 

The current paper will deal exclusively with the first of these requirements, though 

promising approaches to the second problem are a separate subject of investigation [4].   

Theoretical enhancements have been implemented in the FRANC3D code as described 

herein. 

 

 

Theoretical Background for Crack Growth with Mixed Non-Proportional Loading 

Conditions 

 

Maximum Stress Criteria 

Resolving the (isotropic) lead crack stress intensities, (KI, KII, KIII), into the asymptotic 

stress intensities (kI, kII, kIII) associated with an infinitesimal crack branch at angle , we 

obtain  
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For the coordinate system illustrated in Figure 2 
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 Figure 2  Reference coordinate system for theoretical development 

A similar solution for 3D anisotropy based on the work of Hoenig [5], will not be further 

discussed here, but has been be treated and implemented in FRANC3D in much the same 

manner as the isotropic theory that will now be further discussed.   

 

For proportional loading, the classical Maximum Tangential Stress (MTS) theory, 

proposed by Erdogan and Sih [2] for isotropic materials, asserts that the crack will grow 

toward the location of the maximum tangential tensile stress (equivalent to maximizing 

kI).  By differentiating kI and equating to zero 
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where c is the kink angle.  This criterion seeks out a mode I crack path.  As illustrated 

in Figure 3, the maximum tangential stress theory works well for low ductility materials 

like PMMA, but fails to predict a transition, observed for 7075-T6 and 2024-T3 

aluminum alloys, to a path that is associated with the Maximum Shear Stress (MSS) .  In 
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these materials, the transition is sudden, and the crack seems exclusively dominated by 

either mode I or mode II.   

 

While it should be noted that the data in Figure 3 is for cracks loaded quasi-statically 

until the crack begins to tear, as opposed to cyclic loading, similar behavior can occur as 

a result of cyclic loading, as will be shown.   

-30

-20

-10

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90

Mode mixity, -ATAN(KII/KI)

Dqc

LEFM Max stress
Amstutz (1995) 2024-T3, L-T
Amstutz (1995) 2024-T3, T-L
Hallback & Nilsson (1994) 7075-T6
Maccagno & Knott (1989), PMMA
Maccagno & Knott (1991), HY130 @ -196C

Mode I 

Transition

7075-T6 

Transition

2024-T3 

Mode II

(MSS)

Transition

HY 130 Steel

PMMA, No Transition

(MTS)

  

Figure 3  Test data of various investigators [7, 8, 9, 10], showing transition to shear mode 
dominated growth for ductile metals at high mode mixities 

 

Fracture Mode Interaction and Asymmetry 

Chao and Liu [11] describe the sharp transition behavior as a result of competing failure 

mechanisms in mode I and mode II as shown in Figure 4.  According to their hypothesis, 

the two modes do not interact (see also [12]), and the crack will fail in Mode I unless 
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 (4) 

Where KIc and KIIc are the pure mode fracture toughness values for a straight growing 

crack, and the subscript “max” denotes maximizing with respect to the kink angle.  For 

the purpose of further discussion, this criterion will be described as the “Modal” fracture 

criterion 
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Figure 4 Transition mechanism proposed by  Chao and Liu {11] 

Note, however, that the HY130 steel in Figure 3 behaves in a different manner
1
, 

exhibiting a more gradual transition to a kink angle of zero, rather than the angle 

associated with maximum mode II.  Thus, both tensile and shear modes of growth appear 

to be contributing to failure.  This type of behavior correlates well to a Modified Strain 

Energy Release Rate (MSERR) approach proposed by Kfouri & Brown [13], that 

suggests a failure locus of the form 
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For a non-critical load state, the most critical crack growth direction would be obtained 

by maximizing the left hand side of this equation with regard to .  A measure of how 

nearly critical the loading is in terms of an equivalent mode I stress intensity can be 

written by solving Equations (4) and (5) for KIc respectively and rewriting so that the 

crack is critical if kIeq = KIC. 
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1
 The HY-130 tests exhibited tearing in a zig-zag microscopic shear mode.  The crack 

turning angles shown for this alloy were read from Maccagno and Knott’s photographs, 

and reflect the average trend of the zig-zag line, consistent with our intent.  Maccagno 

and Knott gave quite different values of the turning angle. 
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While the modal criterion assumes non-interaction of modes I and II, modes II and III are 

both shear modes, and can be combined into a resolved shear stress intensity  
22

23 IIIII kkk   (8) 

It seems reasonable to assume that such modes would interact in materials that fail by 

either the Modal or MSERR criterion, which infers that equations (6) and (7) can be 

generalized in 3D to  

       







































max

2

2

2

2

max
,  III

IIIC

IC

II

IIC

IC

IeqI k
K

K
k

K

K
kMAXk  (9) 

(Modal) 

and, 

        

max

2

2

2

2

2
 





















 III

IIIC

IC

II

IIC

IC

IeqI k
K

K
k

K

K
kk  (10) 

(MSERR) 

The ratios KIC/KIIC and KIC/KIIIC are measures of the fracture mode asymmetry of a 

material, a term coined by Kfouri describing the relative fracture resistance of a given 

material in the different modes.  The material dependent transition points observed in the 

data in Figure 3 can be correlated to different values of these ratios.  While the fracture 

mode asymmetry is couched in terms of fracture toughness ratios, the intent is to view 

these ratios as material parameters in their own right, that can be used to model the 

transitions between tensile and shear crack propagation under both monotonic and cyclic 

loading conditions.     

 

 

Fracture Resistance Anisotropy 

In addition to fracture mode asymmetry, which addresses the relative fracture resistance 

of a material to the different fracture modes, there is also the potential for the fracture 

resistance to vary as a function of crack orientation within the material.  Buczeck and 

Herakovitch [14] expressed the fracture resistance in 2D as a simple elliptical function.  

This was generalized to include a more flexible interpolation function, as shown in Figure 

5, and extended to 3D [15, 16, 17] to express the (pure mode) stress intensity factor at 

which a crack will propagate in an arbitrary orientation.  The crack orientation in 3D is 

identified by the normal and tangential vectors (n,a) as illustrated in Figure 6a.   
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Figure 5  Polar interpolation function for fracture resistance anisotropy in 2D [16, 17] 
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a. Geometry of crack orientation at a point on an arbitrary crack front 
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b. Principle fracture resistance values and traces of crack growth direction a in cardinal planes 

Figure 6  Physical Parameters Governing 3D Fracture Resistance Anisotropy [15] 

 

Assuming three principle planes of material symmetry, each with their own 2D fracture 

resistance interpolation functions as shown in Figure 6b, the stress intensity at which a 

crack will propagate in the (n,a) orientation is given by  
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Where the trace fracture resistance values, Ki of the a vector in fracture resistance space, 

as illustrated in Figure 6b, are given by  
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and the Kij are the six principal fracture resistance values in 3D (two for each principal 

planes), and ni and ai are the components of the n and a vectors.  Depending on 

processing symmetries, the six principal fracture resistance values may not all be unique.   

If they are all equal, and l m=1, the properties are isotropic with regard to fracture 

resistance.   

For the purposes of the current development, Kp will be considered to be normalized to 

the fracture resistance in a reference orientation, likely chosen to be the orientation for 

which the properties are most fully characterized.  By definition, Kp=1 in the reference 

orientation.  

 

Extension to Fatigue Crack Growth 

For application to fatigue crack growth, the six principal fracture resistance parameters 

and the fracture mode asymmetry parameters are assumed to be the same for all crack 

growth in a given material, whether near threshold or approaching the fracture toughness.  

This implicitly assumes that, the K
eff

 vs da/dN curves are parallel regardless of crack 

orientation or modality of failure, and any differences can be represented by an 

appropriate horizontal shift (in Kmax and K
eff

).  While this is almost certainly an 

oversimplification, it represents an attempt to include all these real-world effects in the 

simplest way possible
2
. 

When we speak of K
eff

 in this venue, we are referring to the cyclic stress intensity that 

actually makes it to the crack tip, as opposed to the globally applied K.  Among the 

potential crack tip shielding effects, Mode I plasticity induced crack closure [18], though 

still a topic of lively discussion, remains an industry standard approach to account for R-

ratio effects.  Add shear modes, and there is the potential for friction to reduce the 

effective shear cyclic stress intensity.    While there is ample evidence for shear mode 

crack tip shielding in the literature [19, 20, 21] no quantitative theoretical framework has 

become widely accepted for modeling this behavior.   

Despite these difficulties, it was recognized that without taking into account shielding 

effects in some way, known phenomena could not be predicted.  Also, it was desired to at 

least maintain industry standard capability for mode I problems, including the ability to 

predict the effect of R-ratio.  It was thus decided to adopt as a baseline the NASGRO 

crack growth model formulation [22, 23], including the Newman closure equations for 

                                                 
2
 Kfouri suggested that the fracture mode asymmetry might also be a function of orientation, but that 

possibility was excluded in the current formulation. 
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Mode I closure, and attempt to extend the equations in a rudimentary way to account for 

mixed modes.  While it was recognized that this could potentially have serious 

shortcomings, it would serve at least as a temporary member in the overall theoretical 

framework, with the opportunity to improve upon it as better methods become available. 

For the purposes of the present formulation, we will again invoke the steady-vibratory 

scenario of Figure 1, and introduce the notation  


 KKK  (13) 

Superscripts refer to the extreme values, max and min, for KI, and to the corresponding 

extreme values for the shear modes.  That is, the positive sign will correspond to the 

extreme load state with the most positive KI value, regardless of the sign or magnitude of 

the shear modes.   

Referring to Figure 3, there are two possible assumptions that could be made with regard 

to crack closure: 

 

-Closure occurs in the lead crack only (no infinitesimal kink, resolved stresses 

only) 

-Closure behavior occurs in the infinitesimal kink tip 

 

With the assumption of kink tip closure, crack growth is evaluated at the infinitesimal 

kink tip, and Eq 13 would written in lower case k’s , and be evaluated (and the sign 

convention established) at the kink tip.  While capital (lead crack) notation will be 

followed on the next few equations, bear in mind that they would be written in lower case 

(kink tip) notation for the second assumption above.   With that in mind, crack closure 

will be defined by the mode I component.  

1FKKKK I
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Where Newman and global closure options as shown in Figure 7. 
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The Newman closure function (slightly modified by the additional material parameter C 

for negative R-ratios) is given by 
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While KII and KIII do not “close” in the sense that mode I does, it can first be 

postulated that once the kink tip closes in mode I, a “stick” or “slip” condition exists, 

altering KII and KIII as follows 




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
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frictionslipfor

frictionstickforF
F
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FKK
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III
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III

II

eff

II

1

1

23

23

23

 (17) 

For simple sliding friction, F23 should lie between stick and slip values.  For (Newman) 

closure over a small region near the tip of the crack, the weight functions for tension and 

shear modes are identical, thus the maximum amount of K23 that can be dissipated in 

Coulomb friction by a compressive KI is 

),0(23 I

op

I

comp

I

comp

I

frict KKMaxKwhereKK    (18) 

To the degree that the global weight functions for tensile and shear are in agreement, 

these expressions will also be approximately true for global closure.  Allowing the 

possibility of closure at both extremes of the cycle,  

 
frictionCoulombforF

KK

KK
MaxF

IIIII

comp

I

comp

I






















1
22

23 ,1


 (19) 

Note that like the stress intensity factors, the closure parameters F1 and F23 may be 

written in lower case when they refer to values evaluated at the kink tip. 
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Lead Crack Closure 

The lead crack stress intensity factors and R-ratio for lead crack closure may be 

expressed as 
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




I

I
I

K

K
R  (21) 

The opening stress intensity factors are given by 
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In the special case where KI
+
<0, KI

+
 and KI

op
 must are set to zero for compression-

compression loading. The effective crack tip k values are calculated from the lead K
+
 

and K
op

 values using (1).   
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 (23) 

It is postulated that the crack will grow in the direction corresponding to the maximum 

growth rate, da/dN, associated with these k values, which will require a numerical 

search to maximize an appropriate growth parameter.  Note that the use of resolved 

kI
eff

()|max as the crack turning criterion with global closure, proportional loading, and 

positive KI values yields results equivalent to the MTS crack turning criterion.  A more 

general criterion will be proposed later on. 

One area of discomfort evident in the foregoing formulation is the treatment of negative 

R-ratios.  In NASGRO and other legacy codes, negative K’s are nominally allowed, and 

act to accelerate the crack growth via negative R-ratios using the Newman closure 

equations (an approach with its own shortcomings even for mode I loading).  In mixed-

mode situations, however, allowing negative KI values (which unrealistically involves 

crack faces passing through each other) leads to resolved mode II components at non-

zero .  Yet, neglecting negative KI values neglects the associated acceleration associated 

with –R ratios.   

 

Kink Tip Closure 

The lead crack stress intensity factors needed to evaluate kink tip closure are the same as 

given in Equation (20), except that for the reasons just discussed, in the case of a negative 

R-ratio at the lead crack it was found necessary to enforce global closure (truncate 

negative KI at zero) on the KI term before evaluating its contribution to mode II at the 

kink tip.  Negative lead crack KI’s are allowed to contribute to kI, to preserve the negative 

R-ratio acceleration for near-mode I scenarios.   
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Theoretically, the sign convention as to which is the + side of the cycle is not decided 

until the kink tip stress intensity factors and ranges are calculated from the lead crack 

values using (1). 
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However, by taking the absolute value and by defining the mode I R-ratio as 

 
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
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II

II
I

kkMAX

kkMIN
R   (25) 

we rectify the use of the lead crack sign convention (as will be seen, the sign of the shear 

mode ranges is later squared, and is thus inconsequential).  The kink tip effective stress 

intensity ranges then given by 















































III

II

I

eff

III

eff

II

eff

I

kf

kf

kf

k

k

k

23

23

1

 (26) 

 

Generalized Crack Propagation Criteria 

As alluded to earlier, determination of the crack growth direction will require a numerical 

search to maximize an appropriate growth parameter.   Following the approach of Buzcek 

and Herakovitch [14] used successfully in FRANC2D [24] for many years, the crack is 

postulated to grow in the direction so that the ratio between the crack driving force and 

the crack growth resistance is maximized. 
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Writing Equations (9, 10) in terms of k
eff

 as crack driving forces, and using (11) for the 

crack growth resistance, we can write the generalized crack propagation criteria as  
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(Modal) 
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(MSERR) 

Note that these kI eq
eff

 values are effective in the sense that they are closure adjusted, and 

equivalent in the sense that they include all mixed mode effects (to the extent the theory 

is capable), and can thus be used in conjunction with a standard mode I closure model.   

The angle resulting from the maximization, c, is the predicted kink angle. 
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Use of the NASGRO Equation 

The NASGRO Equation for calculation of the crack growth rate is given as follows [22]. 
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Where we have taken the liberty of including kI eq
eff

 and, 
  

  

  
  
































0
1

0
1

0

1*

1

0

1*

1

1

Rfor
A

fK

Rfor
A

fK

K

NP

N

P

P

RCC

RC

CR

RC

th  (31) 















0

1

*

1 aa

a
KK  (32) 
















































ys

ICt

tA

kICC

K
twhereeBKK

k


5.21 0

2

0  (33) 

The problem is that Kmax and Kapplied, as required in Equation (30), are not defined in a 

manner sufficiently general to include mixed mode behavior.  It is proposed that Kmax be 

generalized by using the equivalent value. 

  eqIeqIeqI kkMAXk ,max  (34) 

Where kI eq can be written for the two material behaviors as 
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The Kapplied value to be used to shape the near-threshold regime is more difficult to 

define with confidence, in part, because there is some evidence [25 ] that as threshold is 

approached (very small scale yielding), the modal transition sometimes disappears 

(suggesting that the fracture mode asymmetry ratios reduce near threshold).  Based on 

this tentative observation, one might simply assume that Kth in Equation (30) is 

evaluated using (31) with R= RI, and use kI (calculated with no closure, thus the same 

as in (24)) as Kapplied.  However, this would require that c be determined by maximizing 

(30) instead of (28) or (29).  Such an approach might have merit, driving cracks in a 

mode I direction near threshold, but could potentially be non-conservative if shear modes 
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were able to contribute to propagation in the near-threshold regime.  On the other hand, 

one could conservatively neglect threshold altogether.  

For the current implementation it was decided to calculate pure mode thresholds as 

follows. 
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The use of the intrinsic (closure-free) thresholds as the basis for estimating shear mode 

threshold is almost certainly conservative.  The equivalent applied values may then be 

calculated. 
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(MSERR) (39) 

KI 
th

 and kI eq
applied

  are substituted for kth  and kapplied  in Equation (30) to calculate 

the crack growth rate.  This method is not expected to perform well at predicting MPNL 

threshold behavior, but should serve as a lower bound for the purposes of crack growth 

analyses until a better method becomes available. 

 

 

Correlation with Tension-Torsion Data 

A mixed mode/non-proportional loading test program was undertaken to provide MNPL 

crack turning data.   Specimens were made of IN718 nickel alloy, machined into a 

tension-torsion configuration with through-wall cracks, and thus were predominantly 

loaded in mode I/II.  Tests included specimens with tension and torsion loading in-phase, 

tension constant and cyclic torsion, torsion constant and cyclic tension, and tension and 

torsion loading180 degrees out-of-phase.  Fabrication and testing took place at NASA 

MSFC, and fractography and K-solution development was performed by Shelby 

Highsmith [26] at Georgia Tech.  A summary of the test data is provided in Table 1.  

Some crack tips were observed to bifurcate initially, with one of the kinks subsequently 

becoming dominant.  In other cases, a negative kink would occur on one crack tip, and a 

positive kink on the other (speaking in crack tip coordinates, so a “symmetric” looking 

kink arrangement is actually one positive and one negative). In all these cases, both 

primary and secondary angles were recorded (though it wasn’t always clear which was 
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which), and when more than one like angle resulted, they were averaged in the table.  For 

further detail, see [26]. 

Table 1.  Inco 718  Crack Kink angle Data 

Measured Kink Angles

Spec No RI RII RIII KI+ KII+ KIII+ Mean Beq Primary Secondary

In Phase 1 0.6 0.6 0.6 19.160 10.280 5.6100 28.22 -37.0

2 0.6 0.6 0.6 19.435 10.670 5.7000 28.77 -37.0

8 0.1 0.1 0.1 10.940 10.830 2.1700 44.71 -38.0 8.5

9 0.1 0.1 0.1 11.025 10.725 2.7600 44.21 -56.5 17

12 0.1 0.1 0.1 16.470 7.170 1.7200 23.53 -28.0

16 0.1 0.1 0.1 13.600 8.850 2.3800 33.05 -32.5

KI Const 3 1 0.6 0.6 17.705 11.090 3.2300 26.33 -54.5

4 1 -1 -1 17.775 11.175 2.5200 0.00 0.0

6 1 0.0204 0.0204 20.405 10.430 6.3750 13.84 4.5

10 1 0.1 0.1 10.445 10.365 2.2000 25.22 1.0

13 1 0.1 0.1 16.130 7.195 1.0650 13.30 -46.5 5.5

KII Const 5 0.6 1 1 21.470 10.755 7.0400 33.23 -16.0

7 0.1 1 1 15.480 15.470 2.4250 64.63 -15.5

11 0.1 1 1 16.240 6.970 1.9600 50.06 -10.5

Out of Phase 17 0.1 10 10 14.130 0.902 0.2770 42.37 -38.0

18 0.1 10 10 9.960 0.964 0.2770 44.81 -64.0 6.0

19 0.1 10 10 16.075 0.691 0.1965 39.68 14.5  

The data was fit to an MNPL model that captured modal transition behavior and other 

trends quite well, except possibly for the out-of-phase data.  Observed crack turning 

angles show excellent correlation with the model, as presented in Figure 8.  Hollow 

symbols represent model predictions, and (neighboring) solid symbols are test data, with 

both primary and secondary angles plotted.  Note that Highsmith defined the experiments 

with shear of opposite sign to the data in Figure 3, resulting in “flipped” plots.   
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Figure 2.2  Correlation of Mixed-Mode, Non-Proportionally Loaded Specimens Data with Predicted 
Kink Angles 

The ability to correlate the data was encouraging, and fracture surface examination 

(Figures 2.2a and 2.2b) showed a striking difference in appearance for tensile and shear 

dominated fracture, lending additional credibility to the existence of a fracture mode 

transition.  On the down side, it was found that the data could be fit fairly comparably 

using more than one combination of parameters, which would predict significantly 

different growth rates.  Unfortunately, crack growth rates were not measured during these 

tests, so a unique best fit could not be established for lifing purposes.   
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a. In-phase 

 

 

b. Constant tension/cyclic torsion 

 

Figure 2.3  Crack Face Appearance for Tensile and Shear Dominated Crack Growth [28] 

Discussion 

An implementation of an MNPL crack growth approach has been presented capable of 

analyzing a constant amplitude linear cycle between two points.  While this is an 

encouraging advance, significant obstacles remain.  Vibratory modes can exhibit 

subcycles involving all three fracture modes, particularly when neighboring vibratory 

modes are active simultaneously.  Inevitably, a real-world application of the method will 

require a fully 3D pairing method, which remains to be defined. 

Tensile crack (MHS) deflection 

 = -27 ° 
Shear crack (MSS) deflection 

 =  18 ° 

Shear crack (MSS) deflection 

 =   1 ° 

Tensile crack (MHS) deflection 

 = -41 ° 
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Also, evidence from other authors [21,27] suggests that addition of shear modes into an 

otherwise mode I dominated cycle can in fact slow or arrest the crack in some regimes, as 

opposed to speeding it up as would be predicted with positive fracture mode asymmetry 

ratios.  Further, Tschegg [20] showed that cracks propagating (planar) in pure mode III 

can slow down and arrest even when the applied KIII increases with crack length.  As 

aluded to earlier, these shortcomings are likely attributable to roughness induced closure 

associated with shear mode growth, which is not correctly accounted for by the simple 

mode I plasticity induced closure/friction method presented herein.  It is nevertheless 

hoped that the framework provided will remain useful as further advances remedy these 

deficiencies. 
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